

Système De Fonte De Neige

Application:

Le traçage électrique des surfaces pavées telles que: trottoirs, entrées et rampes de stationnement est une méthode efficace et économique de prévenir l'accumulation de glace et de neige. Le système de fonte de neige électrique remplace des moyens anciens et moins efficaces comme la circulation d'eau chaude ou d'huile chaude, pelle ou charrue et offre une alternative efficace à l'emploie du sel et autres produits chimiques qui peuvent endommager le pavage et l'environnement.

Le câble à isolant minéral MIC :

Le câble à isolant minéral MIC, de type à résistance en série employant un conducteur métallique de haute température comme élément chauffant est de performance supérieure et de qualité industrielle. L'isolation du conducteur se fait par oxyde de magnésium (MgO), un diélectrique inorganique. La gaine extérieure en Incoloy 825 résiste à la corrosion tout en fournissant une protection mécanique et un point de mise à la terre. Dû à la performance supérieure des

câbles MIC, les projets de fonte de neige peuvent être conçus en employant ces avantages pour réduire le coût global et améliorer la fiabilité du système.

Le câble MIC vs les câbles autorégulants :

Les câbles MIC sont employés pour les systèmes de fonte de neige depuis plus de quarante-cinq ans et offrent plusieurs avantages sur la technologie de câbles autorégulants parallèles.

Puissance constante: Le câble MIC à résistance en série offre une puissance uniforme sur toute sa longueur. Les câbles chauffants autorégulants parallèles subissent une baisse de tension significative le long du circuit réduisant ainsi la puissance à la fin de course.

Haute tension: Le câble MIC s'opère jusqu'à 600V comparé à la limite de 347V pour le câble chauffant autorégulant parallèle, ce qui augmente la longueur des circuits et en diminue le nombre. Cette tension élevée réduit aussi l'intensité du courant et donc les coûts de distribution de puissance et peut même éliminer le besoin de transformateur abaisseur.

Aucun appel de courant : Le câble MIC élimine la sur-dimension des disjoncteurs due à l'appel de courant par temps froid. En général, le câble MIC ne produit pas d'appel de courant à température froide et permet donc de choisir le disjoncteur d'après le régime permanent. Les disjoncteurs choisis pour des câbles chauffants autorégulants parallèles doivent être sur-dimensionnés pour compenser l'appel de courant.

Haute puissance: Les câbles MIC peuvent être employés jusqu'à 88 watts par pied (289W/m). Dû à la performance supérieure du câble MIC, la puissance de sortie peut être augmentée réduisant le câble nécessaire à l'obtention d'un certain wattage. La limite de puissance des câbles chauffants autorégulants parallèles est de l'ordre de 30 à 35 watts par pied (100 à 115 W/m) exigeant un espacement réduit et l'augmentation du câble chauffant requis.

Gaine solide: La gaine solide en Incoloy 825 du câble MIC résiste au dommage mécanique durant l'installation. Les gaines en plastique des câbles chauffants parallèles autorégulants s'endommagent facilement durant l'installation.

Haute température : Les câbles MIC peuvent être exposés à de hautes températures évidemment requises pour une installation dans l'asphalte. Ces températures élevées endommagent les câbles chauffants autorégulants parallèles.

Installation dans un conduit :

L'installation des câbles MIC dans un conduit se fait sans réduction de performance et sans l'addition de câble. Cependant l'installation de câbles chauffants autorégulants parallèles dans un conduit exige une réduction de performance de l'ordre de 40% augmentant donc la quantité de câble requis.

Choix de conception: Les câbles MIC sont disponibles dans un choix de résistance et avec un ou deux conducteurs. Cette variété permet au concepteur de fournir la solution la plus économique prenant en considération plusieurs variables telles que : la longueur de circuit, la tension et les besoins en distribution de puissance. Les câbles chauffants autorégulants parallèles sont limités à un ou deux choix donnant très peu de variation de conception.

PUISSANCE REQUISE						
Lieu	Classe I		Classe II		Classe III	
	Watts/Pi ²	Watts/M ²	Watts/Pi ²	Watts/M²	Watts/Pi ²	Watts/M
Calgary, AB	45	485	55	592	65	700
Edmonton, AB	50	538	60	646	70	753
Little Rock, AR	20	215	30	323	50	538
Denver, CO	42	452	50	538	60	646
Wilmington, DE	30	323	40	430	50	538
District de Colombia	30-40	323-430	40-55	430-592	55-60	592-646
Mt. Home ID	21	226	37	398	57	613
Chicago, IL	40	430	50	538	60	646
Indianapolis, IN	40	430	40	430	40-60	430-646
Dubuque, IA	40	430	40-60	430-646	60	646
Kansas City, KS	40	430	50	538	60	646
Ashland, KY	30	323	42	452	50	538
Bangor, ME	40	430	40	430	60	646
Baltimore, MD	30-45	323-485	50-60	538-646	60-75	646-807
Boston, MA	40-50	430-538	50-60	538-646	60-75	646-807
Detroit, MI	40-60	430-646	60	646	60	646
Minneapolis, MN	42-75	452-807	60-75	646-807	70-75	753-807
St-Louis, MO	40-60	430-646	40-60	430-646	60	646
Winnipeg, MB	40	430	50	538	60	646
Moncton, NB	35	377	45	485	55	592
Omaha, NB	40-45	430-485	60	646	60	646
Concord, NH	50	538	50	538	75	807
Atlantic City, NJ	30	323	40	430	60	646
New York, NY	35-40	377-430	40-50	430-538	50-60	538-646
Syracuse, NY	40-60	430-646	60	646	60	646
Charlotte, NC	42	452	30-42	323-452	42	452
Cincinatti, OH	42	452	30-42	323-452	42	452
Cleveland, OH	40	430	45	485	45-55	485-592
Ottawa, ON	45	485	55	592	65	700
Toronto, ON	35	377	45	485	55	592
Tulsa, OK	20	215	30	323	40	430
Montreal, QC	45	485	60	646	60	646
Regina, SK	45	485	60	646	60	646

Étape 1 : Déterminer la puissance en watts (W)

Le ASHRAE "Systems Handbook" classifie les systèmes de fonte de neige d'après l'urgence de fonte requise.

Classe 1 (Minimum):

Trottoirs et entrées résidentiels.

Classe 2 (Modéré) :

Trottoirs et entrées commerciaux, marches d'hôpitaux.

Classe 3 (Maximum):

Postes de péages d'autoroute et ponts, aire de manoeuvre et d'évolution d'aéroport. Afin de vous aider dans votre choix de puissance, nous avons identifié les besoins recommandés pour certaines villes Nord Américaines. Choississez celle qui représente le mieux vos conditions.

Étape 2 : Sélectionner la tension (V)

Une augmentation de tension réduit l'intensité du courant et augmente la longueur du circuit réduisant le coût global du système de fonte de neige.

Étape 3 : Déterminer la surface de chaque circuit de câble chauffant (A)

Pour les grands projets, le calibre du disjoncteur limite l'intensité du courant de chaque circuit et donc la surface couverte par chaque câble chauffant. Le code électrique Canadien et le "National Electrical Code" exigent que la charge en régime permanent de chaque disjoncteur soit limitée à 80% du nominal. Par exemple: la charge en régime permanent pour un disjoncteur de 40A serait 80% de 40 ou 32A. L'intensité d'opération ne doit pas dépasser 40A d'après l'approbation CSA

Une grande surface peut être divisée en zones plus petites basées sur les locations de panneaux ou joint d'expansion. Une zone typique mesure 200 pi² (18m²).

a = Amp. total du circuit

$$A = \frac{a \times V}{W}$$
 EQ-1

$$a = \frac{P \times L}{V}$$
 EQ-2

Étape 4: Déterminer la puissance maximale du câble (P)

Il est normal de vouloir maximiser la puissance afin de minimiser le montant de câble requis. La puissance des MIC est limitée par le type de pavage et la méthode d'installation.

Type de pavage	Puissance maximale du câble		
	Watts/pi	Watts/M	
Asphalte	15	50	
Béton			
Profondeur de câble 2'smil.	40	131	
Profondeur de câble 3 assent	50	164	
Profondeur de câble 4" (1995)	60	197	
Profondeur de câble 5	70	230	

Étape 5: déterminer la longueur du circuit de câble (L)

La longueur du circuit de câble est:

$$L = \frac{A \times W}{P}$$
 EQ-3

Étape 6: Déterminer l'espacement (S)

L'espacement en pouces (mm) se trouve avec l'équation:

pouce: mm:

$$S = \frac{A}{L} \times 12 \qquad S = \frac{A}{L} \times 1000 \qquad EQ-4$$

Étape 7: Déterminer la résistance du câble (R)

La résistance en ohms/pi (ohms/m) est telle que suit:

$$R = \frac{V^2}{L^2 \times P} \qquad EQ-5$$

Étape 8: Sélection du câble

Employer les tableaux suivants pour sélectionner le bon câble basé sur la résistance et le nombre de conducteurs requis. Quand il n'y a pas un choix exact, sélectionner le câble avec la résistance le plus près du chiffre calculé à l'étape 7. Une sélection de câble avec une résistance plus haute, réduit la puissance avec la même longueur de circuit tandis qu'une sélection avec résistance plus faible augmente la puissance avec toujours la même longueur de circuit.

Étape 9: Conception finale

La sélection du câble étant déterminée, la conception peut être finalisée. La longueur est donnée par l'équation 6 où R est la résistance du câble sélectionné du tableau III.

Étape 9 : Conception finale (suite)

La même équation peut être employée pour finaliser et la puissance du câble et la longueur de circuit.

$$L = \frac{V}{\sqrt{P \times R}}$$
 EQ-6

La charge totale des disjoncteurs en ampères (ne doit pas dépasser 40 pour approbation CSA) peut être calculée à partir de l'Équation 2 employant la résistance de câble pour sélectionner le disjoncteur telle que notée dans le tableau III. L'espacement est déterminé avec l'Équation 4.

Étape 10 : Spécification du câble chauffant

La spécification du câble MIC Serge Baril suit le numéro de catalogue tel que décrit :

Numéro de catalogue

(*)	A	670	В	150	07
Construc-	Forme	Sélection	Diam.	Section	Long.
tion	A ou	du	du câble	chauf-	section
faculta-	E du	conduc-	K = .1875	fante	froide
tive	tableau	teur	B = .3125	en pi.	en pi.

Construction facultative

Préfixe	Suffixe	Description
P		Accroche pour forme "A" seulement
X		Section froide sur-dimensionnée ou
		caractéristique spéciale
	UM	Étiquette UL pour fonte de neige**

^{**} Requiert l'ampérage, le voltage et le wattage avec chaque commande de câble.

Résistance de câble sur mesure MIC :

CÂBLE INSTALLÉ DANS DU BÉTON

Câble à 2 conducteurs (Forme A) Diamètre 0.1875" (4,8 mm) Incoloy, 300 V				
Numéro Résistance du câble ohms / pi ohms /				
556K	.061	.20		
721K	.232	.76		
732K	.335	1.10		
742K	.437	1.43		

Numéro du câble	1,939,000,000,000	istance du câble / pi ohms / m	
au cable	onms / pi	onms / m	
556K	.061	.20	
721K	.232	.76	
732K	.335	1.10	
742K	.437	1.43	
752K	.546	1.79	
766K	.693	2.27	
774K	.740	2.48	
783K	.830	2.72	
810K	1.00	3.28	
813K	1.30	4.26	
818K	1.80	5.90	
824K	2.34	7.68	
830K	2.96	9.71	
838K	3.70	12.14	
846K	4.72	15.48	
860K	5.60	18.37	
866K	6.60	21.65	
894K	9.00	29.52	
919K	18.00	59.04	

Câble	à 2 con	ducteurs	(Forme A)
Diamètre	0.3125"	(9 mm)	Incoloy, 600 V

Numéro Résistance du câble		
du câble	ohms / pi	ohms / m
588B	.0099	.0325
614B	.0209	.0686
627B	.0313	.1027
640B	.0436	.1430
670B	.0683	.224
710B	.1092	.063
715B	.162	.531
720B	.205	.672
732B	.325	1.066
750B	.500	1.640
774B	.735	2.411
810B	1.162	3.811
819B	1.87	6.134
830B	2.97	9.742
840B	4.30	14.104
859B	5.98	19.614

Câble à 1 conducteur (Forme E) 0 1075" IA 9 mm Incolor 600 V

Numéro du câble	Résistance du câble ohms / pi ohms / m		
145K	.0066	.0216	
189K	.013	.043	
216K	.019	.0623	
239K	.041	.1345	
250K	.052	.1706	
279K	.083	.2723	
310K	.095	.3116	
316K	.157	.515	
326K	.260	.853	
333K	.330	1.082	
346K	.457	1.499	
372K	.730	2.394	
412K	1.17	3.838	
415K	1.48	4.854	
423K	2.36	7.741	
430K	2.80	9.184	
447K	4.50	14.760	

TABLEAU III

Méthode de Contrôle :

Il y a trois méthodes standards pour le contrôle d'un système de fonte de neige chacune représentant un choix entre les coûts d'installation et d'opération.

Contrôle manuel : Le contrôle manuel est le moins dispendieux, cependant dû à sa dépendance au facteur humain, il peut ne pas être le plus efficace.

Contrôle ambiant : Le contrôle ambiant dépend d'un thermostat de type ambiant pour démarrer le système de fonte de neige selon la température. Cette méthode permet au système d'opérer à des températures ambiantes froides avec ou sans la présence d'humidité.

Détecteur de neige automatique : Le système automatique détecte une basse température et la présence d'humidité et démarre le système de fonte de neige seulement quand les deux conditions existent. Le système de détection de neige automatique élimine l'erreur humaine et offre la solution la plus économique et fiable.

Contrôles et Accessoires :

CATALOGUE	DESCRIPTION	CATALOGUE	DESCRIPTION
C-4X50	Contacteur, 50A, boîtier CEMA 4X	CS-4	Bande métallique d'attache pour espacement en
C-750	Contacteur, 50A, boîtier CEMA 7		multiple de 4" (100mm)
OC-750	Contacteur, 50A, sur-dimensionné dans un	TE-4X140	Thermostat ambiant, 15-140°F, (10-60°C) CEMA4X
	boîtier CEMA 7	TE-7140	Tel que ci-haut, sauf CEMA7
JBA	Boîte de jonction en Al, CEMA 4	TLE-4X120-1P	Thermostat ambiant et de ligne 32-120°F (0-50°C)
SS-480	Fil d'attache en acier inoxydable		CEMA 4X, SPST
CS-3	Bande métallique d'attache pour espacement	TLE-4X120-2P	Tel que ci-haut, sauf DPST
	en multiple de 3" (75 mm)	SB-CIT-1-APS3	Détecteur de neige et contrôle automatique